

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Chloro-1-[(Z)-2-phenylhydrazin-1-ylidene]propan-2-one

Hatem A. Abdel-Aziz,^a Tze Shyang Chia^b and Hoong-Kun Fun^b*‡

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Rivadh 11451, Saudi Arabia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 22 June 2012; accepted 25 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.148; data-to-parameter ratio = 22.0.

The title compound, C₉H₉ClN₂O, is close to planar (r.m.s. deviation for the non-H atoms = 0.0446 Å); it exists in a *cis* conformation with respect to the C=N double bond. In the crystal, the ketone O atom accepts both N-H···O and C- $H \cdots O$ hydrogen bonds, which leads to [010] infinite chains incorporating $R_2^1(6)$ loops. The crystal structure also features a $C-H\cdots\pi$ interaction.

Related literature

For synthetic applications of hydrazonoyl chlorides, see: Abdel-Aziz & Mekawey (2009). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures. see: Asiri et al. (2011a,b). For a historical perspective on the synthesis, see: Dieckmann & Platz (1905). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

C₉H₉ClN₂O $M_r = 196.63$ Monoclinic, $P2_1/c$ a = 7.2681 (14) Åb = 12.361 (2) Å

c = 10.704 (2) Å $\beta = 101.158 \ (3)^{\circ}$ V = 943.5 (3) Å³ Z = 4

Mo Ka radiation

 $0.37 \times 0.21 \times 0.10 \text{ mm}$

8906 measured reflections

 $R_{\rm int} = 0.030$

2722 independent reflections

2225 reflections with $I > 2\sigma(I)$

 $\mu = 0.36 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker APEX DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.877, \ T_{\max} = 0.963$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ H atoms treated by a mixture of $wR(F^2) = 0.148$ independent and constrained S = 1.06refinement $\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$ 2722 reflections $\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$ 124 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N1 \cdots O1^{i}$ $C1 - H1A \cdots O1^{i}$ $C9 - H9B \cdots Cg1^{ii}$	0.99 (3) 0.95 0.98	2.01 (3) 2.45 2.68	2.948 (2) 3.237 (3) 3.560 (2)	157 (2) 140 149

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6870).

References

- Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 4985-4997
- Asiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011a). Acta Cryst. E67. 01961.
- Asiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o1963.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Dieckmann, W. & Platz, L. (1905). Ber. Dtsch Chem. Ges. 38, 2986-2990. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

‡ Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2012). E68, o2263 [doi:10.1107/S1600536812028759]

1-Chloro-1-[(Z)-2-phenylhydrazin-1-ylidene]propan-2-one

Hatem A. Abdel-Aziz, Tze Shyang Chia and Hoong-Kun Fun

Comment

As part of our ongoing studies of the synthetic chemistry of hydrazonoyl chlorides (Abdel-Aziz & Mekawey, 2009), the title compound was prepared and its crystal structure is now reported.

The asymmetric unit of the title compound is shown in Fig. 1. All of the non-H atoms lie nearly on a plane with r.m.s. deviation of 0.0446 Å. The molecule exists in *cis* configuration with respect to the C7=N2 double bond. Bond lengths and angles are comparable to those in related structures (Asiri *et al.*, 2011*a*,*b*).

In the crystal (Fig. 2), molecules are linked by N1—H1N1···O1 and C1—H1A···O1 hydrogen bonds (Table 1), generating $R_2^{1}(6)$ loops (Bernstein *et al.*, 1995) and forming infinite wave-like chains along [010]. The packing also features a C—H··· π interaction (Table 1), involving *Cg*1, which is the centroid of C1–C6 ring.

Experimental

The title compound was prepared by the coupling reaction of 3-chloro-2,4-pentanedione and the diazonium salt of aniline at 0-5 °C (Dieckmann & Platz, 1905). Yellow blocks were recrystallised from ethanol solution.

Refinement

The atom H1N1 was located in a difference fourier map and refined freely [N1-H1N1 = 1.00 (3) Å]. The remaining H atoms were positioned geometrically [C-H = 0.95 and 0.98 Å] and refined using a riding model with $U_{iso}(H) = 1.2 \text{ or } 1.5U_{eq}(C)$. A rotating group model was applied to the methyl group. Five outliers, (102), ($\overline{2}13$), ($\overline{1}13$), ($\overline{3}15$) and (011) were omitted in the final refinement.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.

1-Chloro-1-[(Z)-2-phenylhydrazin-1-ylidene]propan-2-one

Crystal data	
C ₉ H ₉ ClN ₂ O	F(000) = 408
$M_r = 196.63$	$D_{\rm x} = 1.384 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3613 reflections
a = 7.2681 (14) Å	$\theta = 2.5 - 30.0^{\circ}$
b = 12.361 (2) Å	$\mu = 0.36 \text{ mm}^{-1}$
c = 10.704 (2) Å	T = 100 K
$\beta = 101.158 \ (3)^{\circ}$	Block, yellow
$V = 943.5 (3) \text{ Å}^3$	$0.37 \times 0.21 \times 0.10 \text{ mm}$
Z = 4	
Data collection	
Bruker APEX DUO CCD	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2009)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.877, T_{\max} = 0.963$
Graphite monochromator	8906 measured reflections
φ and ω scans	2722 independent reflections

2225 reflections with $I > 2\sigma(I)$	$h = -10 \rightarrow 10$
$R_{\rm int}=0.030$	$k = -17 \rightarrow 14$
$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 2.9^\circ$	$l = -15 \rightarrow 13$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent
$wR(F^2) = 0.148$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0802P)^2 + 0.7657P]$
2722 reflections	where $P = (F_o^2 + 2F_c^2)/3$
124 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXTL (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc*=kFc[1+0.001xFc $^{2}\lambda^{3}/\sin(2\theta)$] ^{-1/4}
map	Extinction coefficient: 0.008 (3)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
-0.00357 (7)	0.01567 (4)	0.18248 (4)	0.02310 (16)
0.0096 (2)	0.24567 (12)	0.25220 (13)	0.0275 (3)
0.1947 (2)	-0.08946 (14)	0.41978 (16)	0.0235 (4)
0.1820 (2)	0.01726 (13)	0.42826 (16)	0.0220 (3)
0.2872 (3)	-0.26204 (17)	0.51547 (19)	0.0230 (4)
0.2243	-0.2962	0.4397	0.028*
0.3780 (3)	-0.32397 (18)	0.6175 (2)	0.0265 (4)
0.3769	-0.4006	0.6112	0.032*
0.4705 (3)	-0.27448 (19)	0.72882 (19)	0.0278 (4)
0.5321	-0.3169	0.7985	0.033*
0.4715 (3)	-0.16205 (19)	0.7370 (2)	0.0277 (4)
0.5349	-0.1281	0.8128	0.033*
0.3816 (3)	-0.09862 (18)	0.63614 (19)	0.0250 (4)
0.3831	-0.0220	0.6428	0.030*
0.2890 (3)	-0.14930 (17)	0.52499 (18)	0.0216 (4)
0.0985 (3)	0.07370 (17)	0.33405 (18)	0.0225 (4)
0.0876 (3)	0.19245 (16)	0.34351 (18)	0.0221 (4)
0.1800 (3)	0.24284 (17)	0.46791 (19)	0.0256 (4)
0.1471	0.3197	0.4678	0.038*
	x -0.00357 (7) 0.0096 (2) 0.1947 (2) 0.1820 (2) 0.2872 (3) 0.2243 0.3780 (3) 0.3769 0.4705 (3) 0.5321 0.4715 (3) 0.5349 0.3816 (3) 0.3831 0.2890 (3) 0.0985 (3) 0.1800 (3) 0.1471	xy $-0.00357(7)$ $0.01567(4)$ $0.0096(2)$ $0.24567(12)$ $0.1947(2)$ $-0.08946(14)$ $0.1820(2)$ $0.01726(13)$ $0.2872(3)$ $-0.26204(17)$ 0.2243 -0.2962 $0.3780(3)$ $-0.32397(18)$ 0.3769 -0.4006 $0.4705(3)$ $-0.27448(19)$ 0.5321 $-0.16205(19)$ 0.5349 -0.1281 $0.3816(3)$ $-0.09862(18)$ 0.3831 -0.0220 $0.2890(3)$ $-0.14930(17)$ $0.0985(3)$ $0.7370(17)$ $0.0876(3)$ $0.24284(17)$ 0.1471 0.3197	xyz $-0.00357(7)$ $0.01567(4)$ $0.18248(4)$ $0.0096(2)$ $0.24567(12)$ $0.25220(13)$ $0.1947(2)$ $-0.08946(14)$ $0.41978(16)$ $0.1820(2)$ $0.01726(13)$ $0.42826(16)$ $0.2872(3)$ $-0.26204(17)$ $0.51547(19)$ 0.2243 -0.2962 0.4397 $0.3780(3)$ $-0.32397(18)$ $0.6175(2)$ 0.3769 -0.4006 0.6112 $0.4705(3)$ $-0.27448(19)$ $0.72882(19)$ 0.5321 -0.3169 0.7985 $0.4715(3)$ $-0.16205(19)$ $0.7370(2)$ 0.5349 -0.1281 0.8128 $0.3816(3)$ $-0.09862(18)$ $0.63614(19)$ 0.3831 -0.0220 0.6428 $0.2890(3)$ $-0.14930(17)$ $0.33405(18)$ $0.0985(3)$ $0.07370(17)$ $0.34351(18)$ $0.1800(3)$ $0.24284(17)$ $0.46791(19)$ 0.1471 0.3197 0.4678

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supplementary materials

H9B	0.3164	0.2353	0.4787	0.038*
H9C	0.1367	0.2063	0.5382	0.038*
H1N1	0.129 (4)	-0.130 (2)	0.344 (3)	0.032 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.0330 (3)	0.0140 (2)	0.0192 (2)	0.00383 (16)	-0.00273 (17)	-0.00116 (15)
01	0.0323 (8)	0.0238 (7)	0.0241 (7)	0.0020 (6)	-0.0001 (6)	0.0020 (6)
N1	0.0275 (8)	0.0211 (8)	0.0202 (8)	0.0017 (6)	0.0006 (6)	0.0010 (6)
N2	0.0214 (7)	0.0211 (8)	0.0235 (8)	0.0000 (6)	0.0040 (6)	0.0013 (6)
C1	0.0220 (9)	0.0246 (10)	0.0210 (8)	-0.0009 (7)	0.0010 (7)	0.0004 (7)
C2	0.0271 (9)	0.0252 (10)	0.0268 (10)	0.0011 (8)	0.0041 (8)	0.0040 (8)
C3	0.0270 (10)	0.0324 (11)	0.0222 (9)	0.0008 (8)	0.0000 (7)	0.0064 (8)
C4	0.0280 (10)	0.0326 (11)	0.0206 (9)	-0.0028 (8)	-0.0005 (7)	0.0000 (8)
C5	0.0274 (9)	0.0234 (10)	0.0234 (9)	-0.0017 (7)	0.0027 (7)	0.0002 (7)
C6	0.0207 (8)	0.0234 (9)	0.0208 (9)	0.0004 (7)	0.0040 (7)	0.0035 (7)
C7	0.0237 (9)	0.0233 (10)	0.0196 (8)	0.0003 (7)	0.0019 (7)	-0.0002 (7)
C8	0.0211 (8)	0.0240 (10)	0.0212 (9)	0.0000 (7)	0.0039 (7)	0.0005 (7)
C9	0.0283 (10)	0.0240 (10)	0.0227 (9)	-0.0004 (7)	0.0002 (7)	-0.0018 (7)

Geometric parameters (Å, °)

Cl1—C7	1.798 (2)	C3—C4	1.392 (3)
O1—C8	1.223 (2)	С3—НЗА	0.9500
N1—N2	1.327 (2)	C4—C5	1.391 (3)
N1—C6	1.409 (2)	C4—H4A	0.9500
N1—H1N1	1.00 (3)	C5—C6	1.397 (3)
N2—C7	1.279 (3)	C5—H5A	0.9500
C1—C2	1.392 (3)	C7—C8	1.475 (3)
C1—C6	1.397 (3)	C8—C9	1.505 (3)
C1—H1A	0.9500	С9—Н9А	0.9800
C2—C3	1.391 (3)	С9—Н9В	0.9800
C2—H2A	0.9500	С9—Н9С	0.9800
N2—N1—C6	119.79 (17)	C4—C5—H5A	120.5
N2—N1—H1N1	121.9 (15)	C6—C5—H5A	120.5
C6—N1—H1N1	118.0 (15)	C5-C6-C1	120.37 (18)
C7—N2—N1	121.15 (18)	C5—C6—N1	121.67 (18)
C2—C1—C6	119.68 (19)	C1—C6—N1	117.96 (18)
C2—C1—H1A	120.2	N2—C7—C8	120.84 (18)
C6—C1—H1A	120.2	N2	122.96 (16)
C3—C2—C1	120.5 (2)	C8—C7—Cl1	116.16 (14)
C3—C2—H2A	119.8	O1—C8—C7	120.24 (18)
C1—C2—H2A	119.8	O1—C8—C9	122.88 (19)
C2—C3—C4	119.25 (19)	C7—C8—C9	116.87 (17)
С2—С3—НЗА	120.4	С8—С9—Н9А	109.5
С4—С3—НЗА	120.4	С8—С9—Н9В	109.5
C5—C4—C3	121.2 (2)	H9A—C9—H9B	109.5
C5—C4—H4A	119.4	С8—С9—Н9С	109.5

supplementary materials

C3—C4—H4A C4—C5—C6	119.4 119.0 (2)	H9A—C9—H9C H9B—C9—H9C	109.5 109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.46 (17) 0.0 (3) -0.1 (3) 0.2 (3) -0.1 (3) -0.1 (3) 179.75 (18) 0.1 (3) (17) 0.1 (3) (3) 0.1 (3) (3)	N2—N1—C6—C5 N2—N1—C6—C1 N1—N2—C7—C8 N1—N2—C7—C11 N2—C7—C8—O1 C11—C7—C8—O1 N2—C7—C8—C9 C11—C7—C8—C9	-4.6 (3) 175.28 (17) -178.98 (17) -1.3 (3) 179.02 (17) 1.2 (2) 0.5 (3) -177.33 (13)
C2-C1-C6-N1	-179.73 (17)	01-07-00-07	177.55 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1N1···O1 ⁱ	0.99 (3)	2.01 (3)	2.948 (2)	157 (2)
C1—H1A···O1 ⁱ	0.95	2.45	3.237 (3)	140
C9—H9 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱ	0.98	2.68	3.560 (2)	149

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+1/2; (ii) -*x*+1, -*y*, -*z*+1.